Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Blaser, Martin J (Ed.)ABSTRACT Haemophilus ducreyicauses the genital ulcer disease chancroid and cutaneous ulcers in children. To study its pathogenesis, we developed a human challenge model in which we infect the skin on the upper arm of human volunteers withH. ducreyito the pustular stage of disease. The model has been used to define lesional architecture, describe the immune infiltrate into the infected sites using flow cytometry, and explore the molecular basis of the immune response using bulk RNA-seq. Here, we used single cell RNA-seq (scRNA-seq) and spatial transcriptomics to simultaneously characterize multiple cell types within infected human skin and determine the cellular origin of differentially expressed transcripts that we had previously identified by bulk RNA-seq. We obtained paired biopsies of pustules and wounded (mock infected) sites from five volunteers for scRNA-seq. We identified 13 major cell types, including T- and NK-like cells, macrophages, dendritic cells, as well as other cell types typically found in the skin. Immune cell types were enriched in pustules, and some subtypes within the major cell types were exclusive to pustules. Sufficient tissue specimens for spatial transcriptomics were available from four of the volunteers. T- and NK-like cells were highly associated with multiple antigen presentation cell types. In pustules, type I interferon stimulation was high in areas that were high in antigen presentation—especially in macrophages near the abscess—compared to wounds. Together, our data provide a high-resolution view of the cellular immune response to the infection of the skin with a human pathogen.IMPORTANCEA high-resolution view of the immune infiltrate due to infection with an extracellular bacterial pathogen in human skin has not yet been defined. Here, we used the human skin pathogenHaemophilus ducreyiin a human challenge model to identify on a single cell level the types of cells that are present in volunteers who fail to spontaneously clear infection and form pustules. We identified 13 major cell types. Immune cells and immune-activated stromal cells were enriched in pustules compared to wounded (mock infected) sites. Pustules formed despite the expression of multiple pro-inflammatory cytokines, such as IL-1β and type I interferon. Interferon stimulation was most evident in macrophages, which were proximal to the abscess. The pro-inflammatory response within the pustule may be tempered by regulatory T cells and cells that express indoleamine 2,3-dioxygenase, leading to failure of the immune system to clearH. ducreyi.more » « lessFree, publicly-accessible full text available March 12, 2026
- 
            Boolean matrix factorization (BMF) has been widely utilized in fields such as recommendation systems, graph learning, text mining, and -omics data analysis. Traditional BMF methods decompose a binary matrix into the Boolean product of two lower-rank Boolean matrices plus homoscedastic random errors. However, real-world binary data typically involves biases arising from heterogeneous row- and column-wise signal distributions. Such biases can lead to suboptimal fitting and unexplainable predictions if not accounted for. In this study, we reconceptualize the binary data generation as the Boolean sum of three components: a binary pattern matrix, a background bias matrix influenced by heterogeneous row or column distributions, and random flipping errors. We introduce a novel Disentangled Representation Learning for Binary matrices (DRLB) method, which employs a dual auto-encoder network to reveal the true patterns. DRLB can be seamlessly integrated with existing BMF techniques to facilitate bias-aware BMF. Our experiments with both synthetic and real-world datasets show that DRLB significantly enhances the precision of traditional BMF methods while offering high scalability. Moreover, the bias matrix detected by DRLB accurately reflects the inherent biases in synthetic data, and the patterns identified in the bias-corrected real-world data exhibit enhanced interpretability.more » « less
- 
            Boolean matrix factorization (BMF) has been widely utilized in fields such as recommendation systems, graph learning, text mining, and -omics data analysis. Traditional BMF methods decompose a binary matrix into the Boolean product of two lower-rank Boolean matrices plus homoscedastic random errors. However, real-world binary data typically involves biases arising from heterogeneous row- and column-wise signal distributions. Such biases can lead to suboptimal fitting and unexplainable predictions if not accounted for. In this study, we reconceptualize the binary data generation as the Boolean sum of three components: a binary pattern matrix, a background bias matrix influenced by heterogeneous row or column distributions, and random flipping errors. We introduce a novel Disentangled Representation Learning for Binary matrices (DRLB) method, which employs a dual auto-encoder network to reveal the true patterns. DRLB can be seamlessly integrated with existing BMF techniques to facilitate bias-aware BMF. Our experiments with both synthetic and real-world datasets show that DRLB significantly enhances the precision of traditional BMF methods while offering high scalability. Moreover, the bias matrix detected by DRLB accurately reflects the inherent biases in synthetic data, and the patterns identified in the bias-corrected real-world data exhibit enhanced interpretability.more » « less
- 
            Abstract BACKGROUNDLimited research has explored the effect of cardiovascular risk and amyloid interplay on cognitive decline in East Asians. METHODSVascular burden was quantified using Framingham's General Cardiovascular Risk Score (FRS) in 526 Korean Brain Aging Study (KBASE) participants. Cognitive differences in groups stratified by FRS and amyloid positivity were assessed at baseline and longitudinally. RESULTSBaseline analyses revealed that amyloid‐negative (Aβ–) cognitively normal (CN) individuals with high FRS had lower cognition compared to Aβ– CN individuals with low FRS (p < 0.0001). Longitudinally, amyloid pathology predominantly drove cognitive decline, while FRS alone had negligible effects on cognition in CN and mild cognitive impairment (MCI) groups. CONCLUSIONOur findings indicate that managing vascular risk may be crucial in preserving cognition in Aβ– individuals early on and before the clinical manifestation of dementia. Within the CN and MCI groups, irrespective of FRS status, amyloid‐positive individuals had worse cognitive performance than Aβ– individuals. HighlightsVascular risk significantly affects cognition in amyloid‐negative older Koreans.Amyloid‐negative CN older adults with high vascular risk had lower baseline cognition.Amyloid pathology drives cognitive decline in CN and MCI, regardless of vascular risk.The study underscores the impact of vascular health on the AD disease spectrum.more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            Matrix low rank approximation is an effective method to reduce or eliminate the statistical redundancy of its components. Compared with the traditional global low rank methods such as singular value decomposition (SVD), local low rank approximation methods are more advantageous to uncover interpretable data structures when clear duality exists between the rows and columns of the matrix. Local low rank approximation is equivalent to low rank submatrix detection. Unfortunately,existing local low rank approximation methods can detect only submatrices of specific mean structure, which may miss a substantial amount of true and interesting patterns. In this work, we develop a novel matrix computational framework called RPSP (Random Probing based submatrix Propagation) that provides an effective solution for the general matrix local low rank representation problem. RPSP detects local low rank patterns that grow from small submatrices of low rank property, which are determined by a random projection approach. RPSP is supported by theories of random projection. Experiments on synthetic data demonstrate that RPSP outperforms all state-of-the-art methods, with the capacity to robustly and correctly identify the low rank matrices when the pattern has a similar mean as the background, background noise is heteroscedastic and multiple patterns present in the data. On real-world datasets, RPSP also demonstrates its effectiveness in identifying interpretable local low rank matrices.more » « less
- 
            Abstract Heat shock factor 1 (HSF1) is a stress-responsive transcription factor that promotes cancer cell malignancy. To provide a better understanding of the biological processes regulated by HSF1, here we developed an HSF1 activity signature (HAS) and found that it was negatively associated with antitumor immune cells in breast tumors. Knockdown of HSF1 decreased breast tumor size and caused an influx of several antitumor immune cells, most notably CD8+ T cells. Depletion of CD8+ T cells rescued the reduction in growth of HSF1-deficient tumors, suggesting HSF1 prevents CD8+ T-cell influx to avoid immune-mediated tumor killing. HSF1 suppressed expression of CCL5, a chemokine for CD8+ T cells, and upregulation of CCL5 upon HSF1 loss significantly contributed to the recruitment of CD8+ T cells. These findings indicate that HSF1 suppresses antitumor immune activity by reducing CCL5 to limit CD8+ T-cell homing to breast tumors and prevent immune-mediated destruction, which has implications for the lack of success of immune modulatory therapies in breast cancer. Significance:The stress-responsive transcription factor HSF1 reduces CD8+ T-cell infiltration in breast tumors to prevent immune-mediated killing, indicating that cellular stress responses affect tumor-immune interactions and that targeting HSF1 could improve immunotherapies.more » « less
- 
            Abstract Background There is growing evidence indicating that a number of functional connectivity networks are disrupted at each stage of the full clinical Alzheimer’s disease spectrum. Such differences are also detectable in cognitive normal (CN) carrying mutations of AD risk genes, suggesting a substantial relationship between genetics and AD-altered functional brain networks. However, direct genetic effect on functional connectivity networks has not been measured. Methods Leveraging existing AD functional connectivity studies collected in NeuroSynth, we performed a meta-analysis to identify two sets of brain regions: ones with altered functional connectivity in resting state network and ones without. Then with the brain-wide gene expression data in the Allen Human Brain Atlas, we applied a new biclustering method to identify a set of genes with differential co-expression patterns between these two set of brain regions. Results Differential co-expression analysis using biclustering method led to a subset of 38 genes which showed distinctive co-expression patterns between AD-related and non AD-related brain regions in default mode network. More specifically, we observed 4 sub-clusters with noticeable co-expression difference, where the difference in correlations is above 0.5 on average. Conclusions This work applies a new biclustering method to search for a subset of genes with altered co-expression patterns in AD-related default mode network regions. Compared with traditional differential expression analysis, differential co-expression analysis yielded many more significant hits with extra insights into the wiring mechanism between genes. Particularly, the differential co-expression pattern was observed between two sets of genes, suggesting potential upstream genetic regulators in AD development.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available